A Simple Graph Convolutional Network With Abundant Interaction for Collaborative Filtering
نویسندگان
چکیده
منابع مشابه
Collaborative Filtering with Graph-based Implicit Feedback
Introducing consumed items as users’ implicit feedback in matrix factorization (MF) method, SVD++ is one of the most effective collaborative filtering methods for personalized recommender systems. Though powerful, SVD++ has two limitations: (i). only user-side implicit feedback is utilized, whereas item-side implicit feedback, which can also enrich item representations, is not leveraged; (ii). ...
متن کاملCollaborative Filtering with the Simple Bayesian Classifier
Many collaborative filtering enabled Web sites that recommend books, CDs, movies, videos and so on, have become very popular on Internet. They recommend items to a user based on the opinions of other users with similar tastes. In this paper, we discuss an approach to collaborative filtering based on the simple Bayesian classifier. The simple Bayesian classifier is one of the most successful sup...
متن کاملA Radon-based Convolutional Neural Network for Medical Image Retrieval
Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...
متن کاملSocial network collaborative filtering
This paper demonstrates that "social network collaborative filtering" (SNCF), wherein user-selected like-minded alters are used to make predictions, can rival traditional user-to-user collaborative filtering (CF) in predictive accuracy. Using a unique data set from an online community where users rated items and also created social networking links specifically intended to represent likeminded ...
متن کاملGraph Based Convolutional Neural Network
In this paper we present a method for the application of Convolutional Neural Network (CNN) operators for use in domains which exhibit irregular spatial geometry by use of the spectral domain of a graph Laplacian, Figure 1. This allows learning of localized features in irregular domains by defining neighborhood relationships as edge weights between vertices in graph G. By formulating the domain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2021
ISSN: 2169-3536
DOI: 10.1109/access.2021.3083600